进行两个体数据间的配准,并且显示配准后的误差:
http://cn.mathworks.com/help/images/ref/imregister.htmlrequestedDomain=cn.mathworks.com
这里采用的图片是matlab子带的两张MR膝盖图,“knee1.dcm” 作为参考图像,"knee2.dcm"为浮动图像!
Plain Text code
可能接下来大家关注的问题就是这两幅图像到底有什么区别,这种区别又有多大的可视化程度,下面就为推荐两个比较好用的函数用于观测两幅图像的区别。
1
2
|
fixed = dicomread('knee1.dcm'); % 读参考图像fixed
moving = dicomread('knee2.dcm'); % 读浮动图像moving
|
可能接下来大家关注的问题就是这两幅图像到底有什么区别,这种区别又有多大的可视化程度,下面就为推荐两个比较好用的函数用于观测两幅图像的区别。
Plain Text code
imshowpair函数就是指以成双成对的形式显示图片,其中一个重要的参数就是‘method’,他又4个选择
(1)‘falsecolor’ 字面意思理解就是伪彩色的意思了,其实就是把两幅图像的差异用色彩来表示,这个是默认的参数。
(2)‘blend’ 这是一种混合透明处理类型,技术文档的翻译是alpha blending,大家自己理解吧。
(3)‘diff’ 这是用灰度信息来表示亮度图像之间的差异,这是对应‘falsecolor’的一种方式。
(4)参数‘monotage’可以理解成‘蒙太奇’,这是一种视频剪辑的艺术手法,其实在这里我们理解成拼接的方法就可以了。
为什么在这里罗里吧嗦的说这么多的显示呢,大家知道"人靠衣装,美靠...."(就不多说了吧),总之就是一个好的视觉效果能给人以耳目一新的效果。

嗯嗯,这个就是蒙太奇的效果了,


这两个则分别是伪彩色,混合透明处理了,至于大家接受那个就要看自己的爱好了
说到了这里终于结束了这关没有意义的读图环节,请大家原谅我的无耻吧。
二,初始配准(粗配准)
初始配准就是大致的使图像对其,使其差别不要太明显,以方便下一步的精细配准环节。
函数imregconfig这在个环节可是主角,从名字上看就知道他要设置一些参数和方法了,其实他真正的作用是配置优化器和度量准则,
1
2
|
figure, imshowpair(moving, fixed, 'method');
title('Unregistered');
|
imshowpair函数就是指以成双成对的形式显示图片,其中一个重要的参数就是‘method’,他又4个选择
(1)‘falsecolor’ 字面意思理解就是伪彩色的意思了,其实就是把两幅图像的差异用色彩来表示,这个是默认的参数。
(2)‘blend’ 这是一种混合透明处理类型,技术文档的翻译是alpha blending,大家自己理解吧。
(3)‘diff’ 这是用灰度信息来表示亮度图像之间的差异,这是对应‘falsecolor’的一种方式。
(4)参数‘monotage’可以理解成‘蒙太奇’,这是一种视频剪辑的艺术手法,其实在这里我们理解成拼接的方法就可以了。
为什么在这里罗里吧嗦的说这么多的显示呢,大家知道"人靠衣装,美靠...."(就不多说了吧),总之就是一个好的视觉效果能给人以耳目一新的效果。

嗯嗯,这个就是蒙太奇的效果了,


这两个则分别是伪彩色,混合透明处理了,至于大家接受那个就要看自己的爱好了
说到了这里终于结束了这关没有意义的读图环节,请大家原谅我的无耻吧。
二,初始配准(粗配准)
初始配准就是大致的使图像对其,使其差别不要太明显,以方便下一步的精细配准环节。
函数imregconfig这在个环节可是主角,从名字上看就知道他要设置一些参数和方法了,其实他真正的作用是配置优化器和度量准则,
Plain Text code
参数modality指定fixed image, moving image之间的关系,有两种选择‘monomodal’, 'multimodal'两种,分别质量两幅图像是单一模态还是多模态,根据需要自己选择。
返回的参数optimizer是用于优化度量准则的优化算法,这里有
registration.optimizer.RegularStepGradientDescent 或者 registration.optimizer.OnePlusOneEvolutionary两种可供选择。
输出参数metric则是注明了度量两幅图片相似度的方法,提供了均方误差(registration.metric.MeanSquares)和互信息(registration.metric.MattesMutualInformation)两种供选择。
当然大家也可以根据结构扩充这两个参数。
到这里优化器和度量准别就已将做好了,是不是简单到没朋友。
要上大菜了,配准代码
1
|
[optmizer, metric] = imregconfig(modality);
|
参数modality指定fixed image, moving image之间的关系,有两种选择‘monomodal’, 'multimodal'两种,分别质量两幅图像是单一模态还是多模态,根据需要自己选择。
返回的参数optimizer是用于优化度量准则的优化算法,这里有
registration.optimizer.RegularStepGradientDescent 或者 registration.optimizer.OnePlusOneEvolutionary两种可供选择。
输出参数metric则是注明了度量两幅图片相似度的方法,提供了均方误差(registration.metric.MeanSquares)和互信息(registration.metric.MattesMutualInformation)两种供选择。
当然大家也可以根据结构扩充这两个参数。
到这里优化器和度量准别就已将做好了,是不是简单到没朋友。
要上大菜了,配准代码
Plain Text code
imregister函数根据取得的optimizer,metric参数对2D,3D参考图像做变换(transform)目的是fixed,moving image对其,大家关注到有一个参数‘affine’,他是指该变化是仿射变换,同样该参数还可以选为
‘translation’ (x,y)坐标平移变换,不牵涉到旋转个尺度变换
‘rigid’ 刚性变换(平移和旋转)
‘similarity’ 改变换包括了平移,旋转和尺度变换
‘affine’ 在similarity的基础上加入了shear(图像的剪辑)

该图片就是粗配准的结果了,大家可以在右上角看到明显的不重合现象。
三,提高配准精度
粗配准的结果一般情况下达不到实际应用的要求,为此很有必要进一步提高精度,如果有对精度要求不高的朋友看到这里就可以结束了。
1
2
3
|
movingRegisteredDefault = imregister(moving, fixed, 'affine', optimizer, metric);
figure, imshowpair(movingRegisteredDefault, fixed);
title('A: Default registration');
|
imregister函数根据取得的optimizer,metric参数对2D,3D参考图像做变换(transform)目的是fixed,moving image对其,大家关注到有一个参数‘affine’,他是指该变化是仿射变换,同样该参数还可以选为
‘translation’ (x,y)坐标平移变换,不牵涉到旋转个尺度变换
‘rigid’ 刚性变换(平移和旋转)
‘similarity’ 改变换包括了平移,旋转和尺度变换
‘affine’ 在similarity的基础上加入了shear(图像的剪辑)

该图片就是粗配准的结果了,大家可以在右上角看到明显的不重合现象。
三,提高配准精度
粗配准的结果一般情况下达不到实际应用的要求,为此很有必要进一步提高精度,如果有对精度要求不高的朋友看到这里就可以结束了。
Plain Text code
这两条指令可以看到默认生成的优化器和度量函数参数,当然这里提高精度的途径就是通过修改这两个参数了!

在这里我们通过修改两个参数,观察对配准效果的改进:
(1)改变优化器的步长已达到对更加精细的变换。
1
2
|
disp('optimizer');
disp('metric');
|
这两条指令可以看到默认生成的优化器和度量函数参数,当然这里提高精度的途径就是通过修改这两个参数了!

在这里我们通过修改两个参数,观察对配准效果的改进:
(1)改变优化器的步长已达到对更加精细的变换。
Plain Text code
把原步长缩小为原来的3.5倍,结果如下

貌似效果还是有点的啊,大家在看右上角的阴影好像不见了
(2)在(1)基础上改变最大迭代次数
1
2
3
4
|
optimizer.InitialRadius = optimizer.InitialRadius/3.5;
movingRegisteredAdjustedInitialRadius = imregister(moving, fixed, 'affine', optimizer, metric);
figure, imshowpair(movingRegisteredAdjustedInitialRadius, fixed);
title('Adjusted InitialRadius');
|
把原步长缩小为原来的3.5倍,结果如下

貌似效果还是有点的啊,大家在看右上角的阴影好像不见了
(2)在(1)基础上改变最大迭代次数
Plain Text code
效果如下:正上的阴影好像也减小了

四,改变初始条件提高精度
这里的思想就像我们在做雕塑一样,假如我们要用石头雕一个人,首先我们可以大刀阔斧的把头部留出来,然后把脖子留的比头部更细,简单的说就是美女留出S轮廓,或者o型的(哈哈,对号入座就可以了),下一步精雕细琢的时候就会轻松很多,这里的初始条件就是先用简单的变换做出一个初始配准图像,然后以初始配准的结果作为输入做精细配准。
大致做法如下:
1
2
3
4
|
optimizer.MaximumIterations = 300;
movingRegisteredAdjustedInitialRadius300 = imregister(moving, fixed, 'affine', optimizer, metric);
figure, imshowpair(movingRegisteredAdjustedInitialRadius300, fixed);
title('B: Adjusted InitialRadius, MaximumIterations = 300, Adjusted InitialRadius.');
|
效果如下:正上的阴影好像也减小了

四,改变初始条件提高精度
这里的思想就像我们在做雕塑一样,假如我们要用石头雕一个人,首先我们可以大刀阔斧的把头部留出来,然后把脖子留的比头部更细,简单的说就是美女留出S轮廓,或者o型的(哈哈,对号入座就可以了),下一步精雕细琢的时候就会轻松很多,这里的初始条件就是先用简单的变换做出一个初始配准图像,然后以初始配准的结果作为输入做精细配准。
大致做法如下:
Plain Text code
用similarity的变换方式做初始配准,或者你还可以用rigid,transform的方式都可以
1
|
tformSimilarity = imregtform(moving,fixed,'similarity',optimizer,metric);
|
用similarity的变换方式做初始配准,或者你还可以用rigid,transform的方式都可以
Plain Text code
在这里imregtform把变化矩阵输出;
然后用imref2d限制变换后的图像与参考图像有相同的坐标分布
1
|
tformSimilarity = imregtform(moving,fixed,'similarity',optimizer,metric);
|
在这里imregtform把变化矩阵输出;
然后用imref2d限制变换后的图像与参考图像有相同的坐标分布
Plain Text code
imwarp函数执行几何变换,当然依据则是tformSimilarity的变换矩阵了。
1
|
Rfixed = imref2d(size(fixed));
|
imwarp函数执行几何变换,当然依据则是tformSimilarity的变换矩阵了。
Plain Text code
得到的tformsimilarity.T就是传说中的变换矩阵了
tformSimilarity.T= 1.0331 -0.1110 0
0.1110 1.0331 0
-51.1491 6.9891 1.0000
下面就是精配准的部分了:
1
2
3
|
movingRegisteredRigid = imwarp(moving,tformSimilarity,'OutputView',Rfixed);
figure, imshowpair(movingRegisteredRigid, fixed);
title('C: Registration based on similarity transformation model.');
|
得到的tformsimilarity.T就是传说中的变换矩阵了
tformSimilarity.T= 1.0331 -0.1110 0
0.1110 1.0331 0
-51.1491 6.9891 1.0000
下面就是精配准的部分了:
Plain Text code
初始配准结果:
进一步精细配准:
五,到这里就是你说了算了Deciding When Enough is Enough
1
2
3
4
|
movingRegisteredAffineWithIC = imregister(moving,fixed,'affine',optimizer,metric,...
'InitialTransformation',tformSimilarity);
figure, imshowpair(movingRegisteredAffineWithIC,fixed);
title('D: Registration from affine model based on similarity initial condition.');
|
初始配准结果:

进一步精细配准:

五,到这里就是你说了算了Deciding When Enough is Enough
Plain Text code
选择一个合适的,理想的你想要的结果,去飞去装逼吧。
下一篇:《剑指offer》:[62]序列化二叉树
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
figure
imshowpair(movingRegisteredDefault, fixed)
title('A - Default settings.');
figure
imshowpair(movingRegisteredAdjustedInitialRadius, fixed)
title('B - Adjusted InitialRadius, 100 Iterations.');
figure
imshowpair(movingRegisteredAdjustedInitialRadius300, fixed)
title('C - Adjusted InitialRadius, 300 Iterations.');
figure
imshowpair(movingRegisteredAffineWithIC, fixed)
title('D - Registration from affine model based on similarity initial condition.');
|
选择一个合适的,理想的你想要的结果,去飞去装逼吧。
代码全文如下:
%% Registering Multimodal MRI Images % This example shows how you can use |imregister| to automatically % align two magnetic resonance images (MRI) to a common coordinate % system using intensity-based image registration. Unlike some other % techniques, it does not find features or use control points. % Intensity-based registration is often well-suited for medical and % remotely sensed imagery. % Copyright 2011-2013 The MathWorks, Inc. %% Step 1: Load Images % This example uses two magnetic resonance (MRI) images of a knee. % The fixed image is a spin echo image, while the moving image is a % spin echo image with inversion recovery. The two sagittal slices % were acquired at the same time but are slightly out of alignment. fixed = dicomread('knee1.dcm'); moving = dicomread('knee2.dcm'); %% % The |imshowpair| function is a useful function for visualizing % images during every part of the registration process. Use it to see % the two images individually in a montage fashion or display them % stacked to show the amount of misregistration. figure, imshowpair(moving, fixed, 'montage') title('Unregistered') %% % In the overlapping image from |imshowpair|, gray areas correspond to % areas that have similar intensities, while magenta and green areas % show places where one image is brighter than the other. In some % image pairs, green and magenta areas don't always indicate % misregistration, but in this example it's easy to use the color % information to see where they do. figure, imshowpair(moving, fixed) title('Unregistered') %% Step 2: Set up the Initial Registration % The |imregconfig| function makes it easy to pick the correct % optimizer and metric configuration to use with |imregister|. These % two images have different intensity distributions, which suggests a % multimodal configuration. [optimizer,metric] = imregconfig('multimodal'); %% % The distortion between the two images includes scaling, rotation, % and (possibly) shear. Use an affine transformation to register the % images. % % It's very, very rare that |imregister| will align images perfectly % with the default settings. Nevertheless, using them is a useful way % to decide which properties to tune first. movingRegisteredDefault = imregister(moving, fixed, 'affine', optimizer, metric); figure, imshowpair(movingRegisteredDefault, fixed) title('A: Default registration') %% Step 3: Improve the Registration % The initial registration is not very good. There are still significant % regions of poor alignment, particularly along the right edge. Try to % improve the registration by adjusting the optimizer and metric % configuration properties. % % The optimizer and metric variables are objects whose properties % control the registration. disp(optimizer) disp(metric) %% % The InitialRadius property of the optimizer controls the initial step % size used in parameter space to refine the geometric transformation. When % multi-modal registration problems do not converge with the default % parameters, the InitialRadius is a good first parameter to adjust. Start % by reducing the default value of InitialRadius by a scale factor of 3. optimizer.InitialRadius = optimizer.InitialRadius/3.5; movingRegisteredAdjustedInitialRadius = imregister(moving, fixed, 'affine', optimizer, metric); figure, imshowpair(movingRegisteredAdjustedInitialRadius, fixed) title('Adjusted InitialRadius') %% % Adjusting the InitialRadius had a positive impact. There is a noticeable % improvement in the alignment of the images at the top and right edges. %% % The MaximumIterations property of the optimizer controls the maximum % number of iterations that the optimizer will be allowed to take. % Increasing the MaximumIterations allows the registration search to run % longer and potentially find better registration results. Does the % registration continue to improve if the InitialRadius from the last step % is used with a large number of interations optimizer.MaximumIterations = 300; movingRegisteredAdjustedInitialRadius300 = imregister(moving, fixed, 'affine', optimizer, metric); figure, imshowpair(movingRegisteredAdjustedInitialRadius300, fixed) title('B: Adjusted InitialRadius, MaximumIterations = 300, Adjusted InitialRadius.') %% % Further improvement in registration were achieved by reusing the % InitialRadius optimizer setting from the previous registration and % allowing the optimizer to take a large number of iterations. %% Step 4: Use Initial Conditions to Improve Registration % Optimization based registration works best when a good initial condition % can be given for the registration that relates the moving and fixed % images. A useful technique for getting improved registration results is % to start with more simple transformation types like 'rigid', and then use % the resulting transformation as an initial condition for more complicated % transformation types like 'affine'. % % The function |imregtform| uses the same algorithm as imregister, but % returns a geometric transformation object as output instead of a % registered output image. Use |imregtform| to get an initial % transformation estimate based on a 'similarity' model % (translation,rotation, and scale). % % The previous registration results showed in improvement after modifying % the MaximumIterations and InitialRadius properties of the optimizer. % Keep these optimizer settings while using initial conditions while % attempting to refine the registration further. tformSimilarity = imregtform(moving,fixed,'similarity',optimizer,metric); %% % Because the registration is being solved in the default MATLAB coordinate % system, also known as the intrinsic coordinate system, obtain the default % spatial referencing object that defines the location and resolution of % the fixed image. Rfixed = imref2d(size(fixed)); %% % Use |imwarp| to apply the geometric transformation output from % |imregtform| to the moving image to align it with the fixed image. Use % the 'OutputView' option in |imwarp| to specify the world limits and % resolution of the output resampled image. Specifying Rfixed as the % 'OutputView' forces the resampled moving image to have the same % resolution and world limits as the fixed image. movingRegisteredRigid = imwarp(moving,tformSimilarity,'OutputView',Rfixed); figure, imshowpair(movingRegisteredRigid, fixed); title('C: Registration based on similarity transformation model.'); %% % The "T" property of the output geometric transformation defines the % transformation matrix that maps points in moving to corresponding % points in fixed. tformSimilarity.T %% % Use the 'InitialTransformation' Name/Value in imregister to refine this % registration by using an 'affine' transformation model with the 'similarity' % results used as an initial condition for the geometric transformation. % This refined estimate for the registration includes the possibility of % shear. movingRegisteredAffineWithIC = imregister(moving,fixed,'affine',optimizer,metric,... 'InitialTransformation',tformSimilarity); figure, imshowpair(movingRegisteredAffineWithIC,fixed); title('D: Registration from affine model based on similarity initial condition.'); %% % Using the 'InitialTransformation' to refine the 'similarity' result of % |imregtform| with a full affine model has also yielded a nice % registration result. %% Step 5: Deciding When Enough is Enough % Comparing the results of running |imregister| with different % configurations and initial conditions, it becomes apparent that there are % a large number of input parameters that can be varied in imregister, each % of which may lead to different registration results. figure imshowpair(movingRegisteredDefault, fixed) title('A - Default settings.'); figure imshowpair(movingRegisteredAdjustedInitialRadius, fixed) title('B - Adjusted InitialRadius, 100 Iterations.'); figure imshowpair(movingRegisteredAdjustedInitialRadius300, fixed) title('C - Adjusted InitialRadius, 300 Iterations.'); figure imshowpair(movingRegisteredAffineWithIC, fixed) title('D - Registration from affine model based on similarity initial condition.'); %% % It can be difficult to quantitatively compare registration results % because there is no one quality metric that accurately describes the % alignment of two images. Often, registration results must be judged % qualitatively by visualizing the results. In The results above, the % registration results in C) and D) are both very good and are difficult to % tell apart visually. %% Step 6: Alternate Visualizations % Often as the quality of multimodal registrations improve it becomes more % difficult to judge the quality of registration visually. This is because % the intensity differences can obscure areas of misalignment. Sometimes % switching to a different display mode for |imshowpair| exposes hidden % details. (This is not always the case.) displayEndOfDemoMessage(mfilename)
- 顶
- 0
- 踩
- 0
下一篇:《剑指offer》:[62]序列化二叉树
-
如何利用golang运用mysql数据库
这篇文章主要介绍了如何利用golang运用mysql数据库,文章对依赖包、db对象注入ApiRouter等内容,需要的小伙伴可以参考一下
-
shell脚本如何读取properties文件中的值
这篇文章主要给大家介绍了关于shell脚本如何读取properties文件中值的相关资料,文中通过实例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
-
使用git命令上传代码
这篇文章介绍了使用git命令上传代码的方法,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
-
Redis之RedisTemplate配置方式(序列和反序列化)
这篇文章主要介绍了Redis之RedisTemplate配置方式(序列和反序列化),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
-
Go语言context上下文管理的使用
本文主要介绍了Go语言context上下文管理的使用,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
- 站长源码
- 源码站
- 源码
- asp.net 源码
- 织梦cms模板
- 免费网站模板
- 商城源码
- 免费网
- PHP源码
- flash动画素材网
- 源码之家
- 整站模板
- php论坛
- 网站首页模板
- 论坛源代码
- 帝国网站管理系统
- 编程电子书
- 源码网站
- 学生学籍管理系统
- 安卓源代码
- 网站下载
- 登录界面代码
- html5网站
- discuz下载
- 免费网站模板下载
- html代码大全
- 后台管理模板
- 网址导航源码
- 论坛源码
- asp文件
- 免费下载
- 手机源码
- asp网站源码
- asp源码下载
- 导航网站源码
- 导航网站模板
- php软件下载
- 安卓源码
- 点播系统
- 源码中国
- 免费个人网站模板
- 个人简历网页模板
- asp技术
- 商城系统源码
- 在线客服代码
- 源码超市
- 公司网站模板
- 源码下载
- 个人主页模板
- html个人主页模板